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Abstract
We propose a single-species coagulation model with collision-induced
fragmentation, in which a pair of clusters can coagulate into a larger one if
their encounter is a complete inelastic collision; otherwise, one of them will
fragment into two smaller clusters due to a destructive collision. Consider
a simple system with the constant coagulation kernel I (i, j) = I and the
size-dependent fragmentation kernel J (l; i, j) = 2J lu. We then investigate
analytically the kinetic behavior of such a system by means of the rate-equation
approach. It is indicated that the results are crucially dependent on the value of
index u. In the case of u < −1 and I � 2Jζ(−u) (here ζ(x) is the Riemann
zeta function), the cluster size distribution ak(t) approaches the conventional
scaling form, and the system will evolve permanently in time. While in other
cases, ak(t) always takes the modified scaling form; moreover, a balance can
be established between coagulation and collision-induced breakage processes,
and thus the system can eventually evolve to a steady state.

PACS numbers: 82.20.−w, 68.43.Jk, 82.30.Lp, 89.75.Da

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Irreversible coagulation processes are central to a wide range of theoretical and applied fields
and have thus attracted a considerable amount of interest [1–10]. While in some practical
situations, the reverse process of coagulation (namely, fragmentation of clusters) also plays
an important role in the dynamic evolution of cluster growth [11–16]. Fragmentation can be
classified into two categories. If fragmentation of a cluster is driven only by a homogenous
external agent, such processes are inherently linear, namely, the fragmentation rate of a
k-mer (namely, a cluster consisting of k monomers) can be assumed to be proportional to the
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concentration of k-mers [14]. If interactions between fragments are essential, such processes
are intrinsically nonlinear [16]. Coagulation and fragmentation processes are ubiquitous in
nature and are thus of great importance. Examples include reversible colloidal aggregation,
polymer degradation and addition, floc disintegration and coagulation, and aggregation-
breakage processes in Taylor–Couette flow (see also [17–20]). In recent decades, a great deal of
effort has been devoted to understanding the kinetics of coagulation–fragmentation processes
[17–45]. Most intriguingly, many research works have shown that the size distribution of
clusters in coagulation and coagulation–fragmentation systems can approach a scaling form
in the long-time limit (see, e.g., [6–10, 26, 27, 45]). Moreover, an irreversible coagulation
system always evolves permanently with time, while a reversible process can evolve to a
steady state after a sufficiently long time [26, 36, 37]. In order to investigate analytically the
dynamical evolution of coagulation–fragmentation processes, a useful rate-equation approach
has been developed based on the mean-field assumption. Family et al studied aggregation–
fragmentation processes by developing a scaling description for the cluster size distribution
and determined the critical exponents based on the mean-field Smoluchowski rate equation,
and they also testified the theoretical predictions by numerical simulations [26]. And Sorensen
et al investigated the time evolution of the typical cluster size for the general case of
coagulation with fragmentation [27], which is in good agreement with the simulation results
done by Family et al [26]. Carr and da Costa discussed in detail asymptotic behavior of
solutions to the coagulation–fragmentation equations in weak and strong fragmentation cases
[31, 32]. Cañizo identified the equilibrium distribution to which solutions of the discrete
coagulation–fragmentation system of equations converge for large times under the condition
of detailed balance [37]. Li et al used distribution kinetics to model reversible aggregation and
fragmentation processes, and they then obtained analytical and numerical simulation results
for different aggregation and fragmentation rate kernels [38]. Straube and Falcke studied the
kinetics of reversible aggregation and fragmentation with a periodically modulated binding rate
[44]. In our previous work, we discussed the kinetics of aggregation processes with catalysis-
driven fragmentation, in which two clusters of the same species bond spontaneously to form
a large cluster while large clusters break up only with the help of a catalyst [45]. All these
research works have made significant progress in the kinetics of coagulation–fragmentation
processes.

As far as we know, most of research works have incorporated coagulation processes only
with linear fragmentation. And only few investigations have been contributed to coagulation
processes with fragmentation due to interactions between fragments, such as collision-
induced fragmentation [20, 33, 39] and catalysis-driven fragmentation [45]. Collision-
induced fragmentation may arise in practical cases including grinding and explosive-type
processes. Krapivsky and Ben-Naim investigated the kinetics of nonlinear collision-induced
fragmentation and obtained the explicit solution of the fragment size distribution [16]. Vigil
et al considered a closed system of particles, in which any number of particles are produced
by binary collisions, and they then studied the dynamical evolution of such coagulation
processes with collision-induced breakage for arbitrary fragment distribution functions [39].
Coagulation with breakage due to particle–particle collisions may be important especially
for systems with high dispersed-phase loadings [39]. On the other hand, collision-induced
breakage (fragmentation) processes are intrinsically nonlinear [14–16], and studies of such
processes can provide useful understanding of nonlinear effects in aggregation kinetics. Thus,
it is of great practical and theoretical interest to probe into the kinetics of coagulation processes
with collision-induced fragmentation.

Motivated by [16, 39], we have also investigated analytically the kinetics of coagulation
processes with collision-induced fragmentation. Assume that there is only one species A in
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the system and a cluster is characterized only by the number of its individual components. Two
type-A clusters can bond to form a larger cluster when they meet, which can be described as

the reaction Ai +Aj

I (i,j)−→ Ai+j . Here Ai denotes a cluster consisting of i monomers and I (i, j)

denotes the reaction rate kernel at which two clusters coagulate together. Meanwhile, if a pair of
clusters come across and destructively collide with each other, fragmentation of clusters arises.
Cheng and Redner had thoroughly investigated the particular class of splitting models in which
a two-particle collision results in three different outcomes: (i) both particles splitting exactly
into two; (ii) only the larger particle splitting; or (iii) only the smaller particle splitting [14].
Moreover, in some situations a binary collision can produce a random amount of fragments
[39] or result in clusters which are larger than the two colliding ones [1, 33]. For example,
collisional breakage of an i-mer and a j -mer might yield a monomer and an (i+j −1)-mer [33].
In this work, we focus only on another particular case, in which a randomly selected particle
splits upon a binary collision while another particle remains intact [16]. Collision-induced

fragmentation processes can be described by the formula Al + Ai+j

J (l;i,j)−→ Al + Ai + Aj , where
J (l; i, j) is the fragmentation rate kernel. Considering a semi-linear fragmentation kernel,
we can obtain the explicit solution of the cluster size distribution. Intriguingly, the results
show that the scaling properties of the cluster size distribution change qualitatively due to
nonlinearities.

The paper is organized as follows. In section 2, we investigate the coagulation–
fragmentation model by using the rate-equation approach and then analyze the scaling
properties of the cluster size distribution. A brief summary is given in section 3.

2. Analytical solution of the coagulation–fragmentation model

The present investigation is based on the mean-field theory, which assumes that the
reaction proceeds at a rate proportional to the concentrations of reactants. The mean-field
approximation neglects spatial fluctuation of the reactant densities and therefore applies only
to the case of the spatial dimension d equal to or greater than an upper critical dimension dc

[46, 47]. When d < dc, fluctuations in the densities of reactants may lead to a dimension-
dependent kinetic behavior in the long-time limit. Numerical simulations showed dc = 2 for
irreversible aggregation processes [46]. But for reversible aggregation, Family et al verified
that the mean-field rate-equation approach is valid for d � 1 [26]. In this simplified reversible
aggregation model, the aggregation rate and the fragmentation probability of any bond in
clusters are constants independent of the cluster mass; hence, the upper critical dimension dc

for our model may be unity.
We assume that the spatial dimension of our system is d � 1. Fluctuations in the

densities of reactants are ignored and the clusters are assumed to be homogeneously distributed
throughout aggregation–fragmentation processes. Thus, the theoretical approach to such
reversible aggregation processes can be based on the rate equations. At time t, the concentration
of the clusters consisting of k monomers is denoted as ak(t). Based on the Smoluchowski rate
equation given by Family et al [26], the governing rate equation of our model can be written
as

dak

dt
= 1

2

∑
i+j=k

I (i, j)aiaj − ak

∞∑
j=1

I (k, j)aj

+
∞∑
l=1

∞∑
j=1

J (l; k, j)alak+j − 1

2

∞∑
l=1

∑
i+j=k

J (l; i, j)alai+j . (1)

3



J. Phys. A: Math. Theor. 41 (2008) 285005 J Ke et al

In equation (1), the first two terms on the right-hand side account for the gain and loss in ak(t)

due to the coagulation processes Ai + Ak−i → Ak and Ak + Aj → Ak+j (i = 1, 2, . . . , k − 1
and j = 1, 2, 3, . . .), respectively; while the last two terms account for the gain and loss
in ak(t) due to the collision-induced breakage processes Al + Ak+j → Al + Ak + Aj and
Al + Ak → Al + Ai + Ak−i (l, j = 1, 2, 3, . . . and i = 1, 2, . . . , k − 1), respectively.

In this work, we aim to determine the explicit solution of the cluster size distribution ak(t)

from equation (1) and then investigate analytically the dynamical scaling properties of the
coagulation–fragmentation system. However, since equation (1) with varying k is actually an
infinite set of nonlinear differential equations, it is very difficult to determine straightforwardly
the general analytical solution of ak(t) for arbitrary kernels I (i, j) and J (l; i, j). In the
literature, some useful mathematical techniques have been developed to solve the nonlinear
rate equations. For example, an approach based on the application of generating functions or
Laplace transforms can be used to solve exactly the rate equation for irreversible coagulation
processes with special kernels (see, e.g., [3, 8]). And another alternative approach is to make
a scaling ansatz for the solution form of the rate equation, which is used extensively for
coagulation processes with general rate kernels (see, e.g., [4, 6]); however, such an approach
can provide only the asymptotical analytical solution of the cluster size distribution at large
times. Moreover, in order to give a suitable scaling ansatz of the cluster size distribution
for an unexplored system with general rate kernels, one should find out in advance the
explicit solution of such a system with some special rate kernels. Here, we consider a simple
chain-shaped cluster system with the special rate kernels I (i, j) = I and J (l; i, j) = 2J lu

(I, J and u are all constants), which can be solved analytically. In the system, monomers
can be connected together to form an open chain by breakable bonds, but the number of
bonds of each monomer is not more than 2. So, there exist only chain-shaped clusters in
our system. Obviously, each monomer within a k-mer (k > 1) is connected to two nearest
neighbors, except that the two monomers at the two ends of the chain are connected to only
one nearest neighbor and have a dangling bond. Thus, a k-mer has two dangling bonds, which
is independent of the value of k. And an isolated monomer has also two dangling bonds. In a
reaction, only the reactants having dangling bonds are energetic and reactive, and the reaction
rate may depend crucially on the number of the dangling bonds of each reactant. Hence, it
is sound that for our system the coagulation rate between any two clusters is independent
of their sizes, namely, I (i, j) ≡ I . Moreover, we assume that the interactions between any
second- or higher-order nearest-neighbor monomers are all negligible compared with those
between nearest neighbors and the bonds between any two nearest-neighbor monomers have
the same breaking strength. Thus, in a collision, each bond within an arbitrary cluster has
the same possibility of breakage, namely, the breakage rate J (l; i, j) at which an (i + j)-mer
fragments into an i-mer and a j -mer is independent of the sizes i and j . It should also be
pointed out that the breakage rate of an (i + j)-mer is directly proportional to the value of
i + j − 1 because a k-mer has exactly k − 1 bonds. On the other hand, the breakage rate of
a cluster may also have a relation with the impacting efficiency of the impacting cluster. In
this model, a cluster is characterized only by its size (or equivalently, mass) and the impacting
efficiency may be dependent on the size of the impacting cluster. In a spirit similar to [14],
we also consider that the overall impacting efficiency of an l-mer can vary as lu (here u is
the homogeneity index). Thus, we get J (l; i, j) = 2J lu if the breakage rate of a bond is set
to be J . Employing such particular rate kernels, we can determine the analytical solution of
the cluster size distribution from equation (1). The study of the coagulation–fragmentation
system with special rate kernels may provide a simple but useful step towards the theoretical
understanding of nonlinear effect in aggregation kinetics.
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With these hypotheses equation (1) can then be rewritten as

dak

dt
= I

2

∑
i+j=k

aiaj − IM0ak + 2JMu

∞∑
j=1

ak+j − (k − 1)JMuak (2)

with the short-hand notation Mu(t) = ∑∞
k=1 kuak(t). Obviously, the zero- and first-order

moments, M0(t) and M1(t), are of concrete physical meaning. M0(t) denotes the total
number of clusters at time t, while M1(t) describes the total size of clusters. Multiplying
equation (2) with k and summing them up over all k, we obtain Ṁ1(t) = 0, with the
exact solution M1(t) ≡ M1(0). This indicates that the system formally obeys the mass
conservation law. Now the problem reduces to determining the analytical solution of ak(t) from
equation (2).

2.1. The special case of u = 1

We first investigate the special case of u = 1. In order to deduce the analytical solution of
equation (2) and then to discuss the kinetic evolution behavior of the system, we consider here
a simplest but important case in which initially there only exist monomer clusters. The initial
condition can be expressed as

ak(0) = A0δk1. (3)

Under the monodisperse initial condition, equation (2) can be solved with the help of ansatz
[48]

ak(t) = A(t)[a(t)]k−1. (4)

Inserting equation (4) into equation (2), we can recast equation (2) into the following
differential equations:

da

dt
= I

2
A − JA0a

dA

dt
= − IA2

1 − a
+ 2JA0

Aa

1 − a
(5)

with the corresponding initial condition a(0) = 0 and A(0) = A0. It is worth noting that
the mathematical technique employed above is a sort of the method of separation of variables
under the condition 0 < a(t) < 1 for all t. Moreover, it should also be pointed out that an
alternative approach based on the application of Laplace transforms may be useful to solve
equation (2) in this special case (see, e.g., [8]).

From equation (5) we deduce

d ln[A(1 − a)−2]

dt
= 0 (6)

which is straightforwardly solved to yield

A(t) = A0[1 − a(t)]2. (7)

Substituting equation (7) into equation (5), we obtain

da

dt
= I

2
A0a

2 − (I + J )A0a +
I

2
A0. (8)

Equation (8) can be readily solved to give the exact solution

a(t) = I (1 − e−C2t )

I + J + C1 − (I + J − C1) e−C2t
(9)

5
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Figure 1. Semilog plot of the cluster size distribution ak(t) versus time t for different size k. The
initial condition is I = 4, J = 1, u = 1 and A0 = 0.01.

where C1 =
√

J 2 + 2IJ and C2 = C1A0. Thus, we obtain the exact solution of the cluster
size distribution as follows:

ak(t) = A0

[
J + C1 − (J − C1) e−C2t

I + J + C1 − (I + J − C1)e−C2t

]2 [
I (1 − e−C2t )

I + J + C1 − (I + J − C1)e−C2t

]k−1

.

(10)

In the region of t � 1, equation (10) can be asymptotically rewritten as

ak(t) � A0(J + C1)
2

I (I + J + C1)

(
I

I + J + C1

)k

exp[−kC3 e−C2t ] (11)

where C3 = 2C1/(I + J + C1).
The sketch of the time and size dependence of ak(t) is shown in figure 1. It shows that

the system will evolve to a steady state at t → ∞ and ak(t) takes a nonzero steady-state
distribution. Moreover, a plot of ak(t) against k/̃S(t) can collapse the cluster size distributions
for t � 1, where S̃(t) = [ln(I + J + C1) − ln I + C3e−C2t ]−1. S̃(t) is the typical size, which
plays a role analogous to that of the correlation length in ordinary critical phenomena. Such a
plot is illustrated in figure 2. It is not surprising because equation (11) can further be rewritten
as ak(t) ∼ exp[−k/̃S(t)].

The result shows that for this case the cluster size distribution takes the modified scaling
form [43],

ak(t) ∼ λk[f (t)]−w�[k/S(t)] S(t) ∝ [f (t)]z. (12)

Here, f (t) is a monotonically increasing function of time. And the governing scaling
exponents, w and z, describe the scaling properties of the cluster size distribution. In this
case, f (t) = et , w = 0 and z = C2. Moreover, the modified scaling form of equation (12)
implies that there are two scales, the growing scale S(t) ∝ [f (t)]z and the time-independent

6



J. Phys. A: Math. Theor. 41 (2008) 285005 J Ke et al

Figure 2. Semilog plot of the cluster size distribution ak(t) versus rescaled size k/S̃(t), where
S̃(t) = [ln(I + J + C1) − ln I + C3e−C2t ]−1. The initial condition is I = 4, J = 1, u = 1 and
A0 = 0.01.

scale S = limt→∞ M2(t)/M1(t) � (1 + λ)/(1 − λ), associated with ak(t). This is different
from the conventional scaling law only with a single scale (see, e.g., [48]). For this case, the
typical size is S̃(t) = [ln(S + 1) − ln(S − 1) + 1/S(t)]−1. Obviously, the time-independent
scale will dominate the large-time evolution behavior of the cluster size distribution.

Moreover, the total number of clusters is M0(t) = A0[J + C1 − (J − C1) e−C2t ][I + J +
C1 −(I +J −C−1) e−C2t ]−1. This indicates that the total number can remain a certain value in
the long-time limit. Hence, after a sufficiently long time, a balance will be established between
coagulation and collision-induced breakage processes, and the cluster size distribution will
take a nonzero steady-state scaling form finally (namely, small-size clusters can always coexist
with large-size ones). In this special case, our model has the same evolution properties as
coagulation processes with linear fragmentation studied in [24–26, 31, 32, 37].

2.2. The special case of u = 0

We then turn to another special case of u = 0. Under the monodisperse initial condition,
equation (2) can also be analytically solved with the help of ansatz (4). Substituting
equation (4) into equation (2), we deduce two differential equations for this case,

da

dt
= I

2
A − J

Aa

1 − a

dA

dt
= − IA2

1 − a
+ 2J

A2a

(1 − a)2
. (13)

Employing the same algebra used in the above case, we solve equation (13) and then
obtain the exact solution of the cluster size distribution as follows:

ak(t) = 4A0J
2

(I + 2J − Ie−JA0t )2

[
I (1 − e−JA0t )

I + 2J − Ie−JA0t

]k−1

. (14)

7
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Figure 3. Log–log plot of a(t) versus time t for different values of the parameters I, J and u. The
initial concentration of monomers is the same for all numerical computations, A0 = 0.01.

In the long-time limit, equation (14) can be asymptotically rewritten as

ak(t) � 4A0J
2

I (I + 2J )

(
I

I + 2J

)k

exp[−k/S(t)] S(t) = I + 2J

2J
eJA0t (15)

which satisfies the modified scaling form of equation (12). For this case, the growing scale
is S(t) ∝ eJA0t while the time-independent scale is S = (I + J )/J . Moreover, the total
number of clusters can remain a constant value 2JA0/(I + 2J ) at large times. Similar to the
above-discussed case of u = 1, the system in this case will also evolve to a steady state after
a sufficiently long time.

2.3. The general case of u � −1

We now investigate the general case of u � −1. Analyzing the results of the above special
cases, we can also make ansatz (4) for equation (2) in general cases under the monodisperse
initial condition. Obviously, equation (7) also holds in general cases. Substituting
equations (4) and (7) into equation (2), we obtain the following differential equation:

da

dt
= A0

2
(1 − a)2

(
I − 2J

∞∑
k=1

kuak

)
. (16)

The solution of a(t) depends crucially on the value of u as well as the coefficients (I and
J ) of the rate kernels. It is very difficult to determine the exact explicit expression of a(t)

from equation (16) in general cases. When the parameters (A0, I, J and u) are all given, one
may obtain the numerical solution of a(t) by numerical computation of equation (16). Some
examples are illustrated in figure 3. Here, we will focus only on the explicit scaling solution
of the cluster size distribution at large times.

8
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It follows from equation (16) that either a(t) → 1 or 2J
∑∞

k=1 ku[a(t)]k → I at t → ∞.
Moreover, I − 2J

∑∞
k=1 ku[a(t)]k must be equal to or greater than zero so as to ensure

ȧ(t) � 0. On the other hand, ansatz (4) implies that 0 < a(t) < 1 should be obeyed
for all time t > 0. Thus, we can conclude that a(∞) → 1 in the I � 2J

∑∞
k=1 ku case

and a(∞) → a∞ in the remaining case (a∞ is a finite constant satisfying the equation
I = 2J

∑∞
k=1 kuak

∞ and 0 < a∞ < 1). It is obvious that
∑∞

k=1 ku → ∞ and I < 2J
∑∞

k=1 ku

in the u � −1 case. Thus, we can deduce a(t) → a∞ at t → ∞. This can be verified
by the results of numerical computations illustrated in figure 3. In the continuum limit, we
find a∞ � exp{−[2JI−1�(u + 1)]1/(u+1)} for u > −1. Especially, one can exactly determine
a∞ = 1 − e−I/2J for u = −1.

In the long-time limit, we introduce a new variable ã(t) = a∞ − a(t) and then recast
equation (16) into an asymptotical linearized equation as follows:

dã

dt
� −γ ã (17)

where γ = JA0(1 − a∞)2 ∑∞
k=1 ku+1ak−1

∞ . Equation (17) is easily solved to give

ã(t) � C4 e−γ t (18)

where C4 is an integration constant. Making use of equations (18) and (7), we then obtain the
large-time explicit expression of the cluster size distribution as follows:

ak(t) � A0(1 − a∞)2ak
∞ exp[−k/S(t)] S(t) = a∞C−1

4 eγ t (19)

which takes the modified scaling form of equation (12), with the typical size S̃(t) =[−lna∞ + C4a
−1
∞ e−γ t

]−1
.

The above linearization method is a classical approach to study the asymptotical solutions
of nonlinear differential equations near the equilibrium point. Such a technique may be fairly
useful to investigate our coagulation–fragmentation model with general rate kernels. Provided
the given rate kernels can ensure that collision-induced breakage of clusters dominates over or
at least balances against coagulation of clusters, our system will eventually evolve to a steady
state and equation (1) can be approximated as a series of linearized equations for the cluster
size distribution near the equilibrium point. These investigations will be deferred to a future
work.

In this general case, a balance can always be established between coagulation and
collision-induced breakage processes and the cluster size distribution can evolve to a stead-
state scaling form finally. Based on the numerical computation results of equation (16), one
can also obtain the numerical solution of the cluster size distribution in the system with given
parameters (see, e.g., figure 4). Figure 4 shows that a plot of ak(t) against a suitable rescaled
size does collapse the cluster size distributions for k � 1 and t � 1, which can verify our
analytical results above.

2.4. The general case of u < −1

Finally, we investigate the general case of u < −1. Differential equation (16) of a(t) also
holds in this general case. Obviously,

∑∞
k=1 ku has a finite value for u < −1. Let ζ(x) be

the Riemann zeta function, ζ(x) = ∑∞
k=1 k−x (x > 1). The solution of equation (16) further

depends on the relation between the values ζ(−u) and I/2J . We then investigate the kinetic
behavior of the system in three distinct subcases.

9
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Figure 4. (i) Left plot: semilog plot of the cluster size distribution ak(t) versus time t for different
size k. (ii) Right plot: semilog plot of ak(t) versus rescaled size k/S̃(t) for 20 < t < 50000, where
S̃(t) = ln−1[1/a(t)]. The initial condition for numerical computations is I = 4, J = 1, u = 0.5
and A0 = 0.01.

2.4.1. I < 2Jζ(−u) subcase. In this subcase, from equation (16) we again deduce the
following asymptotical solution of a(t) in the long-time limit:

a(t) � a∞ − C4 e−γ t (20)

which is the same as that obtained in the above case of u � −1. Thus, the solution of the
cluster size distribution in this subcase is the same as equation (19), and the system can also
evolve to a steady state finally.

2.4.2. I = 2Jζ(−u) subcase. In this special subcase, we solve equation (16) and then obtain
the asymptotical solution as follows:

a(t) �

⎧⎪⎨⎪⎩
1 − C5t

1/u for −1 > u > −2

1 − C6(t ln t)−1/2 for u = −2

1 − C7t
−1/2 for u < −2

(21)

where C5 = 2[−4JA0u�(2 + u)]1/u, C6 = (JA0)
−1/2 and C7 = [2JA0ζ(−u − 1)]−1/2. By

using equation (21) we determine the asymptotical solution of the cluster size distribution in
the long-time limit,

ak(t) �

⎧⎪⎨⎪⎩
A0C

2
5 t

2/u exp(−C5kt1/u) for −1 > u > −2

A0C
2
6(t ln t)−1 exp[−C6k(t ln t)−1/2] for u = −2

A0C
2
7 t

−1 exp(−C7kt−1/2) for u < −2.

(22)

Equation (22) shows that each ak(t) (k > 1) increases with time first, then reaches a peak
value, and finally decays to zero (see, also, figure 5).
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Figure 5. (i) Left plot: log–log plot of the cluster size distribution ak(t) versus time t for different
size k. (ii) Right plot: log–log plot of ak(t) × tw versus rescaled size k/S(t), where w = −2/u

and S(t) = t−1/u. The initial condition is I = 5.225, J = 1, u = −1.5 and A0 = 0.01.

On the other hand, equation (22) also indicates that the cluster size distribution in this
special subcase (u < −1 and u 	= −2) can obey the conventional scaling form [48]

ak(t) ∼ t−w�[k/S(t)] (23)

with only the growing scale S(t) ∝ t z. It follows from equation (23) that a plot of ak(t) × tw

against k/S(t) can collapse the cluster size distributions for all k � 1 and t � 1. Such
a plot is shown in figure 5. Figure 5 indicates that the growing scale S(t) in equation (23)
plays the same role as S̃(t) introduced in the special u = 1 case. So, the growing scale
S(t) is just the typical size for the conventional scaling law. As for the special subcase
of u = −2, the cluster size distribution takes the logarithm-correction scaling form of
equation (23), ak(t) ∼ (t ln t)−w�[k/S(t)], with the growing scale S(t) ∝ (t ln t)z.

It is well known that the typical size in an irreversible coagulation system is S(t) ∝ t (see,
e.g., [48]). In this subcase, the scaling exponent z is always smaller than 1. Thus, the growing
rate of the typical size S(t) in this subcase is lower than that in irreversible coagulation cases.
This shows that the coagulation course of clusters can be prolonged by collision-induced
fragmentation.

It is also instructive to determine the total number of clusters,

M0(t) �

⎧⎪⎨⎪⎩
A0C5t

1/u for −1 > u > −2

A0C6(t ln t)−1/2 for u = −2

A0C7t
−1/2 for u < −2.

(24)

The results show that the total number in this subcase always decays with time and decreases
to zero in the end. Hence, the system will evolve permanently in time and all the monomers
will bond together to form one giant cluster finally. In other words, coagulation of clusters
will dominate over collision-induced breakage of clusters in the long-time limit.

11
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Figure 6. Diagrammatic sketch of the regions of two different scaling regimes. (i) Region I: the
cluster size distribution satisfies the modified scaling law. (ii) Region II: the cluster size distribution
satisfies the conventional scaling law. The two regions are divided by the curve of I/J = 2ζ(−u).

2.4.3. I > 2Jζ(−u) subcase. In this subcase, equation (16) can be solved to yield the
large-time asymptotical solution

a(t) � 1 − C8t
−1 (25)

where C8 = 2A−1
0 [I − 2Jζ(−u)]−1. One then readily deduces the scaling solution of ak(t) at

large times,

ak(t) � A0C
2C8t

−2 exp(−C8kt−1) (26)

which also takes the conventional scaling form of equation (23), with the universal scaling
exponents w = 2 and z = 1. Equation (26) shows that the cluster size distribution in this
subcase is similar to that in irreversible coagulation processes. Hence, in the long-time limit,
collision-induced breakage of clusters is negligible and the evolution of the system is controlled
crucially by coagulation of clusters.

3. Summary

We have proposed a single-species coagulation model with collision-induced fragmentation.
In the system, when a pair of clusters come across, they can coagulate to form a larger one
due to a complete inelastic collision; meanwhile, one and only one of them may fragment
into two smaller clusters if the collision is elastic and destructive. We then investigated
a simple but solvable system, in which the coagulation reaction kernel is constant and the
fragmentation kernel is size-dependent, namely, I (i, j) = I and J (l; i, j) = 2J lu, and the
initial size distribution of clusters is ak(0) = A0δk1. The analytical solution of the cluster size
distribution was deduced by means of the rate-equation approach. It was found that the results
are crucially dependent on the value of index u.

When u � −1, a balance can always be established between coagulation and collision-
induced breakage processes, and the system can evolve to a steady state eventually. The cluster
size distribution ak(t) takes the modified scaling form of equation (12) and the total number
keeps a nonzero constant in the long-time limit. Moreover, clusters of any size can coexist in
the system throughout the processes. Especially, one can obtain the exact solution of ak(t) in

12
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the special u = 0 and u = 1 cases, which can verify the analytical results for the general case
of u � −1.

When u < −1, the kinetic behavior of the system further depends on the relation between
the values I and 2Jζ(−u). For I < 2Jζ(−u), ak(t) also takes the modified scaling form
of equation (12) and the evolution property of this system is similar to that of the above-
mentioned u � −1 case. For I � 2Jζ(−u), ak(t) approaches the conventional scaling form
of equation (23), and the total number decreases with time and decays consistently to zero in
the end; hence, the system will evolve permanently in time. So, it can be concluded that for
the case of u < −1 and I � 2Jζ(−u), the evolution of the system is controlled crucially by
coagulation of clusters while collision-induced fragmentation of clusters can only prolong the
evolution course.

In short, the cluster size distribution in coagulation and collision-induced fragmentation
processes with the special rate kernels I (i, j) = I and J (l; i, j) = 2J lu may evolve according
to either of the scaling regimes: the modified form or the conventional form. And the two
different regions are divided by the curve of I = 2Jζ(−u), as shown in figure 6. As for our
model with general rate kernels, more sophisticated mathematical methods may be required
to determine the explicit solution of the cluster size distribution.
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